ARTICLE INFO

Article Type

Original Research

Authors

Sadoughi   S.D. (*)






(*) Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Correspondence

Address: Biology Department, Sciences Faculty, Payam-e-Noor University, 71 Mo’allem Boulevard, Mashhad, Iran. Post Box: 91735-433
Phone: +98 (51) 38683900
Fax: +98 (51) 38683001
damoon.sadoughi@mshdiau.ac.ir

Article History

Received:   January  28, 2016
Accepted:   August 8, 2017
ePublished:   September 28, 2017

ABSTRACT

Aims Silver nanoparticles, through free radical production, can cause oxidative stress. The purpose of this study was to determine the effect of crocin on Bax/Bcl-2 ratio, lipid peroxidation and antioxidant enzymes activity in liver tissue of chick embryo treated with silver nanoparticles.
Materials & Methods In this experimental study, 45 Ross 308 Fertilized chicken eggs were randomly divided into five groups (control and experimental groups). On day 10 of incubation, the control group received 0.5 ml of saline solution in an amniotic sac of embryos and experimental groups 1, 2, 3 and 4 were treated with one injection of 0.5 ml of silver nanoparticle 200 ppm and a size of 60 nm. On day 12 of incubation, the experimental groups 2, 3 and 4 were treated with crocin 0.5 mg/ml in concentrations of 100, 200 and 300 μg/ml. On day 20 of incubation, levels of Bax, Bcl-2, malondialdehyde (MDA) and antioxidant enzymes of the liver tissue were measured. Data were analyzed by SPSS 20 software, using one-way ANOVA and Tukey's post hoc test.
Findings In the group of silver nanoparticles compared to the control group, the levels of Bcl-2 and antioxidant enzymes decreased and Bax and malondialdehyde levels increased. In groups of silver nanoparticles with concentrations of 100, 200 and 300 μg/ml of crocin compared to the group of silver nanoparticles alone, the levels of Bcl-2 and antioxidant enzymes increased in dose-dependent manner, and Bax and malondialdehyde levels decreased in dose-dependent manner (p<0.05).
Conclusion Dose-dependent injection of crocin decreases oxidative stress, lipid peroxidation and apoptosis in liver tissue of chick embryo by decrease of toxicity of silver nanoparticles.


CITATION LINKS

[1]Wen R, Hu L, Qu G, Zhou Q, Jiang G. Exposure, tissue biodistribution, and biotransformation of nanosilver. NanoImpact. 2016;2:18-28.
[2]McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22(1):116-27.
[3]Rezazadeh-Reyhani Z, Razi M, Malekinejad H, Sadrkhanlou R. Cytotoxic effect of nanosilver particles on testicular tissue: Evidence for biochemical stress and Hsp70-2 protein expression. Environ Toxicol Pharmacol. 2015;40(2):626-38.
[4]Tang J, Xi T. Status of biological evaluation on silver nanoparticles. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008;25(4):958-61.
[5]Ghorbanzadeh V, Moshtaghian J, Ebadi AG, Bavand Vandechal O. Influence of nano-silver on graffian follicles via intraperitoneal injection in rats. Euro J Exp Biol. 2012;2(4):1367-9.
[6]Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol. 2015;63(4):1023-37.
[7]Gebicki JM. Oxidative stress, free radicals and protein peroxides. Arch Biochem Biophys. 2016;595:33-9.
[8]Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224:164-75.
[9]Winyard PG, Moody CJ, Jacob C. Oxidative activation of antioxidant defence. Trends Biochem Sci. 2005;30(8):453-61.
[10]Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338(1):668-76.
[11]Bjorklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition. 2017;33:311-21.
[12]Limon-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res. 2009;674(1-2):137-47.
[13]Karam Sichani S, Naghsh N, Razmi N. Effects of alcoholic extract of Peganum harmala L. on malondialdehyde concentration and catalaseand glutathione peroxidase activity in mice treated with nanosilver particles. J Mazandaran Univ Med Sci. 2012;22(95):10-7. [Persian]
[14]Wang K. Molecular mechanisms of liver injury: Apoptosis or necrosis. Exp Toxicol Pathol. 2014;66(8):351-6.
[15]Laulier C, Lopez BS. The secret life of Bcl-2: Apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutat Res. 2012;751(2):247-57.
[16]Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. Environmental toxicity, oxidative stress and apoptosis: Ménage à trois. Mutat Res. 2009;674(1-2):3-22.
[17]Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P. Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci USA. 2003;100(25):15035-40.
[18]Liakopoulou-Kyriakides M, Kyriakidis DA. Crocus sativus biological active constituents. Stud Nat Prod Chem. 2002;26(G):293-312.
[19]Vakili A, Eianali MR, Bandegi AR. The protective effects of Saffron against the oxidative damage in a transient model of focal cerebral ischemia in rats. Tehran Univ Med J. 2011;69(7):405-12. [Persian]
[20]Bakhtiary Z, Shahrooz R, Ahmadi A, Malekinejad H, Mostafavi M. Study of protective effects of crocin on testicular histomorphometryand serological parameters incyclophosphamide on treated adult mice. J Urmia Univ Med Sci. 2014;25(7): 663-73. [Persian]
[21]Abdullaev FI. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med. 2002;227(1):20-5.
[22]Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2002;2:7-15.
[23]Samadi H, Javadi S, Asri Sh. Evaluation of the effects of crocin on the serum levels of glucose, insulin, urea, creatinine and β2m in healthy and streptozotocin-induced diabetic rats. J Urmia Univ Med Sci.2015;26(9):802-12. [Persian]
[24]Sadooghi D, Zafar Balanzhad S, Baharara J, Nezhad Shahrokh Abadi Kh. Investigating the synergic effects of ethanolic extract of allium sativum L and electromagnetic field with low frequency on angiogenesis in chick chorioallantoic membrane (In Vivo). J Shahid Sadoughi Univ Med Sci. 2013;21(4):493-504. [Persian]
[25]Saki AA, Salary J. In ovo injection of nano silver, thyme and savory extracts to broiler breeders eggs and their effect on post-hatch immunological parameters. Animal Sci J. 2014;101:71-8. [Persian]
[26]Malek-Mohammadi R, Roghani M, Salami M. The effect of aqueous extracts of Melissa officinalis on the oxidative stress indices in the midbrain tissue. Feyz. 2015;19(1):8-14. [Persian]
[27]Layali E, Tahmasbpour E, Jorsaraei SGA. Effects of silver nanoparticles on lipid peroxidation and quality of sperm parameters in male rats. J Babol Univ Med Sci. 2016;18(2):48-55. [Persian]
[28]Seyedalipour B, Arefifar A, Khanbabaee R, Hoseini S M. Toxicity investigating of silver nanoparticles on ALT, AST, ALP and histopathological changes in NMRI mice. J Mazandaran Univ Med Sci. 2015;25(124):183-93. [Persian]
[29]Adeyemi OS, Faniyan TO. Antioxidant status of rats administered silver nanoparticles orally. J Taibah Univ Sci. 2014;9(3):182-6.
[30]Honarvar F, Vaezi G, Nourani M, Kamrani A, Sadeghnezhad E. Oxidant/Antioxidant index evaluation in the rat embryo induced by Nano-silver particle. New Cell Mol Biotechnol J. 2016;6(23):53-60. [Persian]
[31]Govindasamy R, Rahuman AA. Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J Environ Sci (China). 2012;24(6):1091-8.
[32]Miura N, Shinohara Y. Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun. 2009;390(3):733-7.
[33]AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279-90.
[34]Sun J, Zhang Q, Wang Z, Yan B. Effects of nanotoxicity on female reproductivity and fetal development in animal models. Int J Mol Sci. 2013;14(5):9319-37.
[35]Habibian S, Shadnoush F, Arabi M, Safar B. Evaluation of the cytotoxicity and protein expression alteration induced by nanoparticles of silver in the rat sperm and testis. Shahrekord Univ Med Sci J. 2013;15(4):26-34. [Persian]
[36]Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, et al. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett. 2009;187(1):15-21.
[37]Khorasani N, Baharara J, Iranbakhsh AR, Ramezani T. Apoptotic effects of silver nanoparticles coated with Zataria multiflora leaves extract on HepG2 cell line. Feyz. 2016;19(6):457-67. [Persian]
[38]Ghooshchian M, Khodarahmi P, Tafvizi F. Expression of apoptosis-Related genes bcl-2 and bax in rat brain hippocampus, followed by intraperitoneal injection of nanosilver. Iran South Med J. 2016;19(2):185-93. [Persian]
[39]Yaribeygi H, Mohammadi M. Protective effect of crocin on kidney performance in chronic uncontrolled hyperglycemia-induced nephropathy in rat. J Zanjan Univ Med Sci Health Serv. 2017;25(109):36-49. [Persian]
[40]Bakhtiari Z, Shahrooz R, Ahmadi A, Soltanali F. Protective Effect of Crocin on DNA Damage of Sperm and in Vitro Fertilization (IVF) in Adult Male Mice Treated with Cyclophosphamide. J Mazandaran Univ Med Sci. 2014;24(118):45-59. [Persian]
[41]Esposito E, Drechsler M, Mariani P, Panico AM, Cardile V, Crascì L, et al. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mater Sci Eng C Mater Biol Appl. 2017;71:669-77.
[42]Hosseinzadeh H, Sadeghnia HR. Safranal, aconstituent of Crocus sativus (saffron), attenuatedcerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci. 2005;8(3):394-9.
[43]Bahashwan S, Hassan MH, Aly H, Ghobara MM, El-Beshbishy HA, Busati I. Crocin mitigates carbon tetrachloride-induced liver toxicity in rats. J Taibah Univ Sci. 2015;10(2):140-9.
[44]TeSlaa T, Setoguchi K, Teitell MA. Mitochondria in human pluripotent stem cell apoptosis. Semin Cell Dev Biol. 2016;52:76-83.
[45]Elsherbiny NM, Salama MF, Said E, El-Sherbiny M, Al-Gayyar MM. Crocin protects against doxorubicin-induced myocardial toxicity in rats through down-regulation of inflammatory and apoptic pathways. Chem Biol Interact. 2016;247:39-48.